
Acta Cryst. (1978). B34, 2527-2533 

C o m p u t e r  Retr ieval  and A n a l y s i s  o f  M o l e c u l a r  G e o m e t r y .  
II. Var iance  and Its Interpretat ion 

BY PETER MUm~AY-ROST 

Department of  Chemistry, University of  Stirling, Stirling, Scotland 

AND RICHARD BLAND 

Department of  Sociology, University of Stirling, Stirling, Scotland 

(Received 17 January 1978; accepted 9 March 1978) 

The causes of variance in the observed geometrical parameters of a molecular fragment are outlined. It is 
shown how, with the help of multivariate techniques such as factor analysis, the variance can be partitioned 
between experimental errors and structural variation. 
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Introduction 

In the previous paper (Murray-Rust & Motherwell, 
1978a; hereafter MMa) we outlined how molecular 
geometry can be retrieved from the Cambridge 
Crystallographic Data File, how the reliability of 
individual cases can be estimated and how, in principle, 
statistical analysis can show up trends and patterns in 
the data to increase our understanding at an empirical 
level. In this paper we outline the causes of variation in 
molecular geometry and how this variation can be 
analysed. In particular we shall distinguish carefully 
between variation due to crystallographic errors or 
artefacts and structural variation due to chemical and 
crystallographic effects. 

We assume that a system file of geometry for a given 
molecular fragment has been created (see MMa) and 
that initial screening and searching is complete. (In the 
course of the subsequent analysis we may have to 
revise screens, especially the raw-data screen.) The file 
contains data for n cases (one crystal structure may 
provide several cases if there is more than one fragment 
in the asymmetric unit) and m variables, Pu (bond 
lengths, angles and other physical quantities, see 
Appendix). As explained earlier (MMa) we shall use the 
SPSS  package (Nie, Hull, Jenkins, Steinbrenner & 
Bent, 1975) to carry out all operations on the file and 
its data. 

Varianee in geometrical parameters 

The geometry of a molecular fragment in different 
crystals usually shows considerable variation due to 
two causes: structural variation and experimental 
errors (Fig. 1). Depending on the chemical nature of 
the fragment and the experimental techniques used, 

either of these may predominate. In 211 phosphate 
groups, tabulated by Baur (1974), the variation in 
P - O  length is large (more than 0.2 A) and cannot be 
explained by the reported e.s.d.'s (average value 0.007 
A). It has been shown (Murray-Rust, Bfirgi & Dunitz, 
1978) that 95% of the variance can be convincingly 
attributed to chemical properties of the phosphate 
group and the influence of crystal environments. In a 
study of 11 alanyl fragments from the file with low 
e.s.d.'s no convincing explanation could be found for 
the variance in bond lengths and angles except known 
experimental errors (Murray-Rust, 1977). (This result 
is unremarkable since considerable forces are needed to 
deform saturated carbon skeletons significantly.) 

When structural variation is small, mean values ~j)  
for the parameters can be found; the larger the number 
of cases the smaller the standard error of these means. 
Mean values for the geometry of molecular fragments 
are important to chemists and crystallographers (e.g. in 
testing theoretical calculations, comparison with other 
experimental methods, and model-building). When 
structural variation is large, however, determination of 
the means of the parameters constitutes only part of the 
process, analysis of  variance being at least as impor- 
tant. The following paper (Murray-Rust & Motherwell, 
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Fig. 1. Schematic representation of the various effects contributing 
to the total variance in the geometry of a molecular fragment. 
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1978b; hereafter MMb) shows that nucleosides have a 
large range of conformations and the idea of mean 
geometry for the fragment is almost meaningless. Even 
within one conformation there are variations of up to 
20 ° in torsion angles and the covariance of many of 
the parameters is important. For sophisticated model- 
building (i.e. an accuracy of 0.1 A or better) a know- 
ledge of covariance is almost as important as a 
knowledge of means. 

In the nucleoside study most of the variance can be 
seen to be structural, although large experimental errors 
are present in some cases. Unfortunately, for many 
common fragments both structural variation and 
experimental errors make significant contributions to 
the overall variance. The main part of this paper is 
devoted to showing how the results of statistical 
analysis can be reliably attributed to structural 
variation. To explain the causes and analysis of 
structural variation we shall discuss an ideal situation 
where experimental errors are negligible. Later we 
discuss the effect of errors and the methods available 
for treating them. 

Analysis of structural variation 

We have suggested, then, that the variance in a battery 
of measures applied to a series of fragments can be 
conceptualized as coming from two sources: firstly, 
from experimental error, and, secondly, from real 
differences in molecular structure. We are not, 
however, simply interested in partitioning total variance 
into these two portions - our goal is, rather, to interpret 
structural variance and to see how it can be related to 
the underlying crystallographic and chemical properties 
of the fragment being studied. This idea has been briefly 
discussed in MMa, in which we noted a similarity 
between the analysis of socio-economic census data, for 
example, and data from a file of molecular geometry. 
Having noticed this similarity, it is perhaps not surpris- 
ing to find that one of our principal analytical 
techniques was first developed in the field of the social 
sciences. 

Factor analysis* is a method of transforming a multi- 
variate set of measures in order to explore the possi- 
bility of reducing the set to a smaller number of under- 
lying variables or factors. Thus, for example, the 
answers to batteries of questions in intelligence tests 
can be reduced to a smaller number of independent 
variables which are often taken to be components of 
human ability. The transformation of the original set of 
measures into the desired factors is a mechanical one, 
performed by algorithm; the task of the analyst is to see 
what light is cast by the answers on his original 

* The commonly-used generic term. In fact, we use the Principal 
Components variant of the technique. 

theoretical problem. This he does by considering the 
possibility of correspondences between the derived 
factors and properties or processes of the material 
under study. In so doing he is guided by two things: 
firstly, the existing body of theory in his discipline and, 
secondly, the composition of the derived factors in 
terms of the input measures. Thus, for example, Timms 
(1975), in a study of the towns of the Central Region of 
Scotland, found wide variations between them in terms 
of a large set of socio-economic variables. Factor 
analysis reduced this set to three main factors, which he 
conceptualized as representing respectively the 'Social 
Rank', 'Family Life Cycle' and 'Social Deprivation' 
aspects of the differences between the towns. 

We take up the mathematical properties of the 
method later in this section, but as an introduction one 
can say that it can be seen as an analysis of 
covariation. Suppose we have a set of variables which, 
on inspection, turns out to be made up of two sub-sets, 
with strong inter-correlations within each set, and weak 
correlations between the sets. In such a situation the 
algorithm will find two factors, one corresponding to 
each set. In principle each variate should be normally 
distributed but in practice the methods are fairly robust 
and so long as the distribution of cases (in multi- 
dimensional variable space) is unimodal and deviations 
from linearity are not great the method works well. 

For each variable the mean (pj), variance and 
standard deviation (ag) are computed. The deviation 
from the mean for any case is then expressed as a z- 
score 

Zlj : ( p u  - -  [llj)/a j .  (1) 

The z U form the standardized data matrix, Z, which is 
used for all subsequent analysis, the merit of which is 
that most derived quantities (e.g. factor scores) will 
then have zero mean and unit variance. Moreover if all 
pj are normally distributed then so will be the scores. It 
is therefore important to check on the distribution of 
the z-scores for each variable by computing the 
skewness and kurtosis which are zero if the distri- 
bution is normal. 

There is no reason in general why structural 
variables should be normally distributed, as shown by 
the multimodal scatter of torsion angles in ribonucleo- 
sides (MMb). For small deviations from a mode, 
however, it is not an unreasonable assumption in 
practice. [Indeed the principle of structural correlation 
(Murray-Rust, Biirgi & Dunitz, 1975) suggests a 
Gaussian distribution if the deviations are small enough 
for the energy of distortion to be represented harmon- 
ically (Murray-Rust, Biirgi & Dunitz, 1978).] Variates 
with severe skewness or kurtosis (but still giving an 
overall unimodal distribution) can be transformed by 
logarithmic or similar methods to give new variables 
with a more nearly normal distribution (see, for 
example, Rummel, 1970). For multimodal distri- 
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butions it will be necessary to separate the cases into 
groups or clusters* and to analyse each one separately. 

If all the variates now have a nearly normal distri- 
bution the correlation matrix, R, is calculated where 

1 
Rmm = - Zrn Znm. (2) 

n 

(The individual rjk are the Pearson correlation 
coefficients ofpj with Pk.) If there are no missing values 
in the data matrix Z (as will be the case for output from 
GEOM) then R is Gramian (or semi-positive definite) 
with no negative eigenvalues. 

Factor analysis of molecular geometry may involve 
group-theoretical considerations (which will be dis- 
cussed elsewhere) but when the fragment cannot show 
any symmetry the simple treatment here is appropriate. 
The rn factors F are formed from the eigenvalues ~, and 
eigenvectors E of R by 

Fm m = ~1/2 Em m (3) 

where ~ is the diagonal matrix of the eigenvalues. The 
factors satisfy the relation: 

FF T= amm (4) 

and are linear combinations of the original variables. 
Factor analysis thus corresponds to an orthogonal 
rotation of axes so that the factors (in decreasing order) 
explain as much variance as possible. 

Ideally some of the eigenvalues will be zero, in which 
case only p (<m) factors will be significant, resulting in 
a reduction in the dimensionality of the problem. This 
has been achieved in studies of visible spectra (Bulmer 
& Sturvell, 1975) but is unlikely to apply to molecular 
geometry [except where there are mathematical con- 
straints, e.g. if angles are linearly related (MMb)]. 
Typically, however, some of the eigenvalues may be 
small enough to be regarded as insignificant, effectively 
reducing the dimensionality. In applications of factor 
analysis in other fields, a wide variety of rules have 
been proposed to assist in the decision as to whether a 
factor is important enough to warrant its retention. 
Among these are Kaiser's criterion, which retains 
factors whose eigenvalues are greater than unity, and 
the scree test. This test involves an inspection of the 
plot of factor number against eigenvalue. Such a plot 
typically shows eigenvalues falling rapidly in magnitude 
as one progresses through the first few factors, followed 
by a lower rate of decrease for the remainder, and has 
been likened to a cliff with scree at its base. Factors 
corresponding to the scree area are rejected. Plots 
which do not show this feature, but instead resemble a 
steady slope, are often taken as being indicative of a 
situation where dimensional reduction is not possible. 

* If these clusters cannot be seen from one- or two-dimensional 
statistics, multi-dimensional cluster analysis is in principle appropri- 
ate. It has not yet been used for molecular geometry. 
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In crystallographic applications, however, the e.s.d.'s 
are of great help in making this decision, and we 
consider this question later in this paper. 

We can then compute the matrix of factor scores, S, 
from 

Snp : Znm Fmp 

where F contains only the significant factors. 
Since factor analysis merely represents a trans- 

formation of the data its value lies in the reification of 
the factors, and this is as good a guide as any to deter- 
mining their significance. The mathematical basis of 
factor analysis parallels closely that of normal coordi- 
nate analysis (especially in the symmetry aspects and 
redundant coordinates) and it is to be expected that the 
most important factors will be closely related to soft 
normal coordinates. Factor analysis is only strictly 
appropriate for linear combinations of the parameters 
but if the distortions are not too large (i.e. up to 0.2 A) 
this approximation works well. Second-order effects 
(corresponding to cubic force constants) can be 
revealed if two-dimensional scattergrams of the factor 
scores show slightly non-linear plots (Murray-Rust, 
Bfirgi & Dunitz, 1978). 

Since the factors are orthogonal, their scores in 
particular cases can be independently examined to help 
in reification. The cases can be sorted by scores (SORT 
CASES) and the chemical formulae of those with 
scores outside the 5- and 95-percentiles (i.e. I Siyl > 2) 
plotted graphically (PLOD).  This may show chemical 
features responsible for the exceptional scores which 
can then be included in a revised screen (either to 
eliminate compounds likely to show this factor, or, 
conversely, to include them specifically). Factor 
analysis on the rescreened data should result in an even 
smaller number of factors and hence a clearer 
separation of the chemical causes of molecular vari- 
ability. Alternatively the crystal environment of the 
fragments with high scores can be examined* and a 
quantitative measure of crystal packing forces ob- 
tained. At present, however, rescreening on the basis of 
the environment of the fragment is not possible. 

This analysis of one-dimensional scores applies, of 
course, to other quantities (e.g. z-scores, regression 
residuals). A danger is that the statistics can be 
seriously affected by outliers, isolated points not 
conforming to the normal distribution. This is 'a likely 
occurrence since crystal structures are not analysed at 
random but undertaken because of their interest, and 
unusual geometries are therefore quite common[ 
Outliers due to structural effects are of enormous 
importance in formulating theories of molecular 
variability. For example, there are tens of thousands of 
C - N  lengths on file but only about 10 are in the range 

* It is planned that GEOM will be able to plot this information on 
the line-printer. 



2530 C O M P U T E R  RETRIEVAL AND ANALYSIS OF M O L E C U L A R  GEOMETRY. II 

1 .6-2.8 A. Consideration of these 10 cases, however, 
led Biirgi, Dunitz & Shefter (1973)to develop the idea 
of reaction pathways. Unfortunately, outliers are also 
commonly caused by severe experimental error and we 
tackle this problem in the next section. 

Errors 

Much of the variance in the molecular geometry of the 
compounds on file is due to experimental errors of 
every sort known to crystallography. An obvious 
example is the variation in C - H  lengths which is 
almost entirely due to the difficulty in locating H atoms 
precisely by X-rays. These errors make the identi- 
fication and analysis of structural variance much more 
difficult than has so far been outlined. We believe, 
however, that so long as the importance of errors is 
realized before undertaking an analysis of molecular 
geometry on file worthwhile results can be obtained in a 
large number of cases. We outline the most important 

Structural Distribution Combination of 
variation of errors structural variation 

and errors 
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Fig. 2. The effect of some crystallographic errors on the mean and 
variance of a bond length. Structural variation is normally distri- 
buted with mean /t o and standard deviation o o. (a) Thermal 
motion: the error distribution is left-skew and results in a slightly 
skew observed distribution with lower mean (#') and increased 
variance (0% (b) Non-coincidence of electronic and nuclear 
density: the error distribution is narrow and only the mean of the 
observed distribution is affected. (c) Random errors (absorption, 
disorder, etc.): the mean is unaffected but the variance is 
increased. 

types of error and show their effect on the statistical 
procedures already described. 

Errors (Fig. 2) affect parameters in two main ways: 
by altering the mean and increasing the variance. (The 
skewness and kurtosis may also be affected but in 
general this is less important.) Changes in the mean will 
not affect our analysis of molecular variability, but 
increased variance can be serious. In particular if most 
of the variance is due to errors it will be very hard to 
estimate the structural variance. Typically, errors are 
classified as random, which affect the variance, and 
systematic, which affect the mean, but the latter term 
can be misleading in the present context. Bond lengths 
derived from the file are affected by thermal motion, a 
serious systematic error, but present in different 
amounts in each structure. The mean bond length taken 
over all cases is lowered but the variance is also 
increased, a phenomenon we shall call pseudorandom 
error. Because the error can sometimes be very large 
the skewness may also be somewhat altered (Fig. 2a). 
An even more serious consequence of variable amounts 
of systematic error we call pseudocovariance. If an 
error affects more than one parameter (as is often the 
case with thermal motion or disorder) then varying 
amounts of the error will suggest that the parameters 
are covarying. There is no simple statistical way of 
eliminating pseudocovariance and it must be kept 
constantly in mind when factors are being interpreted. 
Another case of pseudocovariance is the uncertainty of 
position of light atoms in a framework of heavy atoms, 
causing covariance among several bonds and angles. In 
many cases this can be detected because it produces 
precise geometrical relationships; for example, it was 
shown for phosphates that Baur's (1974) model of P 
rattling in an 04 tetrahedron did not yield the observed 
covariance of bond lengths and angles (Murray-Rust, 
Biirgi & Dunitz, 1978). 

It must be stressed that the Cambridge Data Centre 
makes no attempt to analyse crystallographic errors in 
any structure and reports only the authors' estimate of 
random errors (e.s.d.'s). The term error-free set refers 
only to the fact that the bond lengths calculated from 
the atomic coordinates are not inconsistent with the 
published values or with normally accepted values. It is 
merely a guarantee that the data set is free from most 
gross typographical errors. 

R a n d o m  errors 

Ideally if all random and pseudorandom errors can be 
accurately estimated then the structural variance can be 
calculated. For accurate structures this is possible if 
there are few gross errors. 

Gross random errors 

Catastrophic errors can occur in structure solution, 
refinement and publication and in general will cause 



PETER MURRAY-RUST AND RICHARD BLAND 2531 

large random errors in parameters. Typical examples 
are: incorrect structures, e.g. molecules in the wrong 
position in the cell; mis-publication of cell dimensions; 
refinement with an inadequate amount of data. (We 
have encountered an alanyl fragment on file with all 
angles at C,~ less than 70 ° !) Some of these errors may 
lead to bond lengths which result in Cambridge flagging 
the structure as an error set. Most of the other cases 
will have large e.s.d.'s (category 4 for the AS flag) and 
will probably show up as widely separated outliers. A 
policy of manual inspection of outliers will mean most 
of these can be safely identified and rejected. 

Other random errors 

In crystal structure analysis it is fortunate that most 
systematic and random errors in the reflexion data are 
transmitted to the positional parameters as normally 
distributed errors, which can be estimated from the 
inverse normal matrix (Cruickshank, 1967). It is, of 
course, these estimates which give rise to the standard 
deviations of bond lengths coded on file. Though some 
refinement methods tend to underestimate the e.s.d.'s, 
there are now several half-normal plots (Hamilton, 
1974) in the literature which suggest that for well- 
refined structures with good weighting schemes and 
data the e.s.d.'s are a fair estimate of the effect of 
experimental error on the variability of the positional 
parameters. 

Apart from gross errors we shall assume that the 
e.s.d.'s on file give a reasonable estimate of the random 
variability of positional parameters. These e.s.d.'s, 
although only crudely coded on file, can be used to help 
decide how much of the variance is structural, and 
hence how many factors are significant. Beating in 
mind that e.s.d.'s may be underestimated we shall be 
cautiotls about giving credibility to too many factors 
unless there is good crystallographic justification. 

Systematic errors 

Known systematic crystallographic errors can be 
roughly divided into those which have no effect on the 
variance and those which cause pseudovariance (Fig. 
2). 

Thermal motion 

This is probably the most serious cause of pseudo- 
random error (and to a lesser extent of pseudo- 
covariance). Although a few structures on file have 
corrected bond lengths these depend on the model used 
and there is no real alternative to using uncorrected 
values. For certain types of compound (e.g. perchlor- 
ates) thermal motion makes any attempt at analysis of 
structural variance totally impossible, but these 
situations are well known and can be avoided. Searches 
can usually be designed so that thermal-motion errors 
are most unlikely to be >0.05 fit. (In many organic 
structures the thermal-motion correction will be quite 
small, 0.002--0.010 fit; i.e. the standard deviation from 
this effect is only about 0.003 fit.) Even if the distri- 
bution is somewhat skew, the main effect will be to add 
a small amount to the pseudovariance, much of which 
will be specific and will not affect the factors. Severe 
effects will almost certainly produce outliers and if 
these are automatically inspected it is easy to refer to 
the original literature in the few cases that are involved. 
(Since outliers caused by large structural variance are 
so valuable in formulating theories it is important to 
verify that they are not caused by thermal motion.) 

Thermal motion can also produce pseudocovariance 
in some cases. Suppose a benzene ring librates about 
the C(1)-C(4)  axis, resulting in an apparent shortening 
of C(1)-C(2)  but not C(2)---C(3), then the angle C(1 ) -  
C(2)-C(3)  will be apparently increased, causing 
pseudocovariance with C ( 1)-C (2). 

Disorder 

This is a serious cause of pseudorandom errors and 
pseudocovariance, and can be very difficult to detect 
even in the original experiment. Consider the case of the 
dimerization of carboxylic acids through hydrogen 
bonding, where there is considerable negative 
covariance between the C=O and C - O  lengths. This 
could easily be ascribed to structural variance since it 
makes good chemical sense. The dimer is almost 
symmetrical, however, and disorder is frequently 
present, probably in varying amounts from structure to 
structure. Much (if not all) of the covariance must 
therefore be attributed to disorder rather than structural 
variation. 

Variance unaffected 

Few systematic errors are present in the same 
amount in each structure determination. The non- 
coincidence of the centroid of electron density with 
nuclear position is probably the most important 
common effect, especially for H atoms, where the 
systematic error in C--H lengths (~0.1 A) is much 
greater than the variance caused by this particular 
error. 

Pseudosymmetry 

If this occurs in a structure, the refinement 
necessarily involves highly covariant atomic 
parameters, and hence pseudocovariance in the internal 
molecular coordinates. We optimistically expect this 
effect to be fairly uncommon (or at least unimportant) 
in organic structures, since few crystallographic publi- 
cations make any mention of it! 
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Artefacts 
Constrained refinement of, for instance, rigid ben- 

zene rings may totally invalidate analysis of structural 
variance. Unfortunately, the data file does not flag this 
technique but in general it is used only in relatively few 
systems and normally only when accuracy is limited or 
there is disorder. It is possible to construct derived-data 
screens to detect some occurrences but it is best to 
avoid cases where it might be used. 

Stat i s t ica l  a n a l y s i s  

will be affected by error, and the easier it should be to 
reify. 

(iv) If the factors cannot be convincingly reified then 
it must be assumed that the covariance is not structural 
and is due to crystallographic errors, either systematic 
or random (underestimated). Before reaching this 
conclusion, however, the molecular formulae of the 
cases with high factor scores should be examined for 
common chemical features. If the factors can be reified 
(as a chemical or crystallographic effect) then the 
scores give a quantitative measure of this effect in each 
case. These scores may then be related to the molecular 
or crystal environment of the fragment. 

It is clear from the nature of crystallographic errors 
that even if they were accurately recorded on file it 
would be impossible to calculate the structural variance 
of a fragment with any precision. A rough estimate is, 
however, extremely valuable particularly in deciding 
how many factors, if any, are significant. Unfor- 
tunately, the file only gives e.s.d.'s for C - C  bonds, but 
other lengths and angles normally have e.s.d.'s in rough 
proportion [e.g. a(CCC) (in degrees) is usually about 
50-100 x a ( C - C )  A]. When the standard deviations 
of the variables are computed they can be compared 
with the e.s.d.'s and if they are of comparable magni- 
tude the structural variance can be assumed to be 
small. 

Standard deviations larger than e.s.d.'s in at least 
some of the parameters can be due to the following 
causes: (a) underestimation of e.s.d.'s, (b) gross 
random errors, (c) pseudovariance from systematic 
errors, (d) structural variance. 

To determine whether the variance is really due to 
structural effects we suggest the following procedure: 

(i) Compute z-scores for all variables and see if there 
are any outliers. These should be examined manually 
(they will only constitute 1-2% of the data) to see if 
there are unusual structural effects or serious errors. 
Outliers with genuine structural variance may be of 
great help in outlining the ways in which molecular 
geometry can vary. 

(ii) Carry out factor analysis on the standardized 
data matrix. The eigenvalues of the correlation matrix, 
in decreasing order, are proportional to the amount of 
variance explained by each factor. In general there will 
be no zero eigenvalues but if the proportion of variance 
due to random errors is roughly known the number of 
factors describing structural variance can be estimated, 
i.e. choose p so that 

1 v 
- -  ~ 2 t ~ 1 - [(e.s.d.)/(observed s.d.)] 2. 
m 1 

(iii) Calculate scores for the p factors, and examine 
them manually to see if any are due to outliers 
produced by errors. If not, attempt to reify the factors; 
in general, the larger the factor the less its coefficients 

C o n c l u s i o n  

Automatic analysis of molecular geometry from the 
data file is clearly enormously faster than searching and 
transcribing the original literature. The ability to bypass 
papers in journals is, however, a mixed blessing and 
highlights the danger of using data files uncritically. It is 
unlikely that for any particular analysis the results can 
be confidently published without looking at some, at 
least, of the original experimental data. However, the 
statistical procedures will pinpoint the few cases it is 
important to check (in MMb it was only necessary to 
refer to two papers out of nearly a hundred). Thus, 
without sacrificing critical judgement, the crystallog- 
rapher is able to carry out analyses of molecular 
geometry very rapidly and accurately. An example of 
such a study, carried out in a short time using the data 
file, is given in MMb. 

A P P E N D I X  
The  use  o f  SPSS  for  s creen ing  and  stat is t ical  a n a l y s i s  

The SPSS  system is so widely available that it is 
almost certainly implemented on any computer which 
is large enough for the data file. The package has a 
complex housekeeping system for files and variables 
and can be directed to carry out simple arithmetic and 
logical operations in a subset of Fortran. The raw-data 
input consists of a table of an indefinite number of cases 
composed of up to 500* variables (which can be real 
numbers or alphabetic characters), and is totally 
compatible with the tabulated output from GEOM. 
Arithmetic and logical operations can be carried out on 
any variable (including alphabetic ones such as atom 
names), and trigonometric and similar functions are 
available. New variables can be created and their values 
computed for all cases or a subset by a Fortran-like IF 
statement. The cases are held in a systemfile (an n x m 
matrix) to which cases (n') or variables (m') can be 

* In some versions, 1000. 
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/ SYSTENFI LE 

cr all 'ra hlc molecula eo chemlca d transfo ~ d ' ' 
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Fig. 3. Relationship of system file to SPSS procedures, including data transformation, selection and statistical analysis. (Raw-data, 
stereochemical and derived-data screening can occur at SELECT IF, and a new system file could be created by WRITE CASES if 
required.) Note that the system file can be repeatedly enlarged by output from SPSS procedures. PLOD and GEOM are CCDC 
programs. 

added at any time. The cases can be sorted according 
to the value of  any variable. If  values for variables in a 
par t icular  case are missing default  values can be 
entered. (The t rea tment  of  da ta  with missing values is 
carefully controlled in the statistical procedures.)  
Weights  for any  case can be read in or generated.  F o r  
large files a r a n d o m  sample can  be taken for analysis.  
Input  and output  options are flexible. 

A n y  number  of  the statistical procedures  can be 
called and scores can be written to file for further 
analysis.  The S E L E C T  IF  s ta tement  allows selection of  
a subset of  the da ta  fulfilling a certain condition. (We 
use this s ta tement  as the raw-da ta  and stereochemical  
screens, sometimes in conjunction with W R I T E  
CASES. )  The main statistical procedures  (Fig. 3) are:  

CONDESCRIPTIVE / One-dimensional statistics, including histo- 
FREQUENCIES j grams and subsets. 
CROSSTABS Contingency tables for variables which 

T-TEST 
PEARSON CORR } 
NONPAR CORR 
SCATrERGRAM 

PARTIAL CORR 
REGRESSION 

ANOVA } 
ONEWAY 
DISCRIMINANT 

take discrete values. 
Test of significance. 
Bivariate correlation for interval and 

ordinal variates. 
Line-printer scatter diagram. This is enor- 

mously useful for finding relationships. 
It can be used to draw sections of a 
three-dimensional scattermap. 

Partial correlation. 
Multiple regression including stepwise 

addition of variables. 

Analysis of variance and covariance. 

Discriminant analysis. 

FACTOR 

CANCORR 

Factor analysis including principal com- 
ponents. 

Canonical correlation. 
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